2.4e: Exercises - Piecewise Functions, Combinations, Composition (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    49550
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A: Concepts

    Exercise \(\PageIndex{A}\)

    1) How does one find the domain of the quotient of two functions, \(\dfrac{f}{g}\)?

    2) What is the composition of two functions, \(f{\circ}g\)?

    3) If the order is reversed when composing two functions, can the result ever be the same as the answer in the original order of the composition? If yes, give an example. If no, explain why not.

    4) How do you find the domain for the composition of two functions, \(f{\circ}g\)?

    5) How do you graph a piecewise function?

    Answers 1-5:

    1.Find the numbers that make the function in the denominator \(g\) equal to zero, and check for any other domain restrictions on \(f\) and \(g\), such as an even-indexed root or zeros in the denominator

    3. Yes. Sample answer: Let \(f(x)=x+1\) and \(g(x)=x−1\). Then \(f(g(x))=f(x−1)=(x−1)+1=x\) and \(g(f(x))=g(x+1)=(x+1)−1=x\). So \(f{\circ}g=g{\circ}f\).

    5.Graph each formula of the piecewise function over its corresponding domain. Use the same scale for the x-axis and y-axis for each graph. Indicate inclusive endpoints with a solid circle and exclusive endpoints with an open circle. Use an arrow to indicate endpoints of −∞or∞.Combine the graphs to find the graph of the piecewise function

    Piecewise Functions

    B. Evaluate Piecewise Functions

    Exercise \(\PageIndex{B}\)

    Givenfunction \(f\), evaluate \(f(−3)\), \(f(−2)\), \(f(−1)\), and \(f(0)\).

    6. \(f(x)= \begin{cases} x+1 & \text{if $x < -2$} \\ -2x-3 & \text{if $x {\geq} -2$} \end{cases}\) 7. \(f(x)= \begin{cases} 1 & \text{if $x \leq -3$} \\ 0 & \text{if $x > -3$} \end{cases}\) 8. \(f(x)= \begin{cases} -2x^2+3 & \text{if $x \leq -1$} \\ 5x-7 & \text{if $x > -1$} \end{cases}\)

    Given function \(f\), evaluate \(f(−1)\), \(f(0)\), \(f(2)\), and \(f(4)\).

    9. \(f(x)= \begin{cases} 7x+3 & \text{if $x < 0$} \\ 7x+6 & \text{if $x {\geq} 0$} \end{cases}\) 10. \(f(x)= \begin{cases} x^2-2 & \text{if $x < 2$} \\ 4+|x-5| & \text{if $x {\geq} 2$} \end{cases}\) 11. \(f(x)= \begin{cases} 5x & \text{if $x < 0$} \\ 3 & \text{if $0 {\geq} x {\leq} 2$} \\ x^2 & \text{if $x > 3$} \end{cases}\)

    Write the domain for each piecewise function in interval notation.

    12. \(f(x)= \begin{cases} x+1 & \text{if $x < -2$} \\ -2x-3 & \text{if $x {\geq} -2$} \end{cases}\) 13. \(f(x)= \begin{cases} x^2-2 & \text{if $x < 1$} \\ -x^2+2 & \text{if $x > 1$} \end{cases}\) 14. \(f(x)= \begin{cases} x^2-3 & \text{if $x < 0$} \\ -3x^2 & \text{if $x {\geq} 2$} \end{cases}\)

    15.Find \(f(-5), f(0)\), and \(f(3)\) given \(f ( x ) = \left\{ \begin{array} { l l } { x ^ { 2 } } & { \text { if } x \leq 0 } \\ { x + 2 } & { \text { if } x > 0 } \end{array} \right. \\[5pt] \)

    16. Find \(f(−3), f(0)\), and \(f(2)\) given \(f ( x ) = \left\{ \begin{array} { l l } { x ^ { 3 } } & { \text { if } x < 0 } \\ { 2 x - 1 } & { \text { if } x \geq 0 } \end{array} \right. \\[5pt] \)

    17. Find \(g(−1), g(1)\), and \(g(4)\) given \(g ( x ) = \left\{ \begin{array} { l l } { 5 x - 2 } & { \text { if } x < 1 } \\ { \sqrt { x } } & { \text { if } x \geq 1 } \end{array} \right. \\[5pt] \)

    18. Find \(g(−3), g(−2)\), and \(g(−1)\) given \(g ( x ) = \left\{ \begin{array} { l } { x ^ { 3 } \text { if } x \leq - 2 } \\ { | x | \text { if } x > - 2 } \end{array} \right.\)

    19. Find \(h(−2), h(0)\), and \(h(4)\) given \(h ( x ) = \left\{ \begin{array} { l l } { - 5 } & { \text { if } x < 0 } \\ { 2 x - 3 } & { \text { if } 0 \leq x < 2 } \\ { x ^ { 2 } } & { \text { if } x \geq 2 } \end{array} \right. \\[5pt] \)

    20. Find \(h(−5), h(4)\), and \(h(25)\) given \(h ( x ) = \left\{ \begin{array} { l } { - 3 x \text { if } x \leq 0 } \\ { x ^ { 3 } \text { if } 0 < x \leq 4 } \\ { \sqrt { x } \text { if } x > 4 } \end{array} \right.\)

    21. Find \(f(−2), f(0)\), and \(f(3)\) given \(f ( x ) = {[{[x-0.5}]}]\\[5pt] \)

    22. Find \(f(−1.2), f(0.4)\), and \(f(2.6)\) given \(f ( x ) = {[{[2x}]}]+ 1 \\[5pt] \)

    Answers to Odd Exercises:

    7. \(f(−3)=1\); \(f(−2)=0\); \(f(−1)=0\); \(f(0)=0\)

    9. \(f(−1)=−4\); \(f(0)=6\); \(f(2)=20\); \(f(4)=34\)

    11. \(f(−1)=−5\); \(f(0)=3\); \(f(2)=3\); \(f(4)=16\)

    13. domain: \((−\infty,1)\cup(1,\infty)\)

    15. \(f (−5) = 25, f(0) = 0\), and \(f(3) = 5\)

    17. \(g(−1) = −7, g(1) = 1\), and \(g(4) = 2\)

    19. \(h(−2) = −5, h(0) = −3\), and \(h(4) = 16\)

    21. \(f(−2) = −3, f(0) = −1\), and \(f(3) = 2\)

    C:Graph Piecewise Functions

    Exercise \(\PageIndex{C}\)

    \( \bigstar \)Graph two-part piecewise functions.

    1. \(h ( x ) = \left\{ \begin{array} { l l } { x ^ { 2 } + 2 } & { \text { if } x < 0 } \\ { x + 2 } & { \text { if } x \geq 0 } \end{array} \right. \\[2pt] \)
    2. \(h ( x ) = \left\{ \begin{array} { l l } { x ^ { 2 } - 3 \text { if } x < 0 } \\ { \sqrt { x } - 3 \text { if } x \geq 0 } \end{array} \right. \\[2pt] \)
    3. \(h ( x ) = \left\{ \begin{array} { l l } { x ^ { 3 } - 1 } & { \text { if } x < 0 } \\ { | x - 3 | - 4 } & { \text { if } x \geq 0 } \end{array} \right. \\[2pt] \)
    4. \(h ( x ) = \left\{ \begin{array} { c c } { x ^ { 3 } } & { \text { if } x < 0 } \\ { ( x - 1 ) ^ { 2 } - 1 } & { \text { if } x \geq 0 } \end{array} \right. \\[2pt] \)
    5. \(h ( x ) = \left\{ \begin{array} { l l } { x ^ { 2 } - 1 } & { \text { if } x < 0 } \\ { 2 } & { \text { if } x \geq 0 } \end{array} \right. \\[2pt] \)
    6. \(h ( x ) = \left\{ \begin{array} { l l } { x + 2 } & { \text { if } x < 0 } \\ { ( x - 2 ) ^ { 2 } } & { \text { if } x \geq 0 } \end{array} \right.\)
    1. \(g ( x ) = \left\{ \begin{array} { l l } { 2 } & { \text { if } x < 0 } \\ { x } & { \text { if } x \geq 0 } \end{array} \right. \\[2pt] \)
    2. \(g ( x ) = \left\{ \begin{array} { l l } { x ^ { 2 } } & { \text { if } x < 0 } \\ { 3 } & { \text { if } x \geq 0 } \end{array} \right. \\[2pt] \)
    3. \(h ( x ) = \left\{ \begin{array} { l l } { x } & { \text { if } x < 0 } \\ { \sqrt { x } } & { \text { if } x \geq 0 } \end{array} \right. \\[2pt] \)
    4. \(h ( x ) = \left\{ \begin{array} { l } { | x | \text { if } x < 0 } \\ { x ^ { 3 } \text { if } x \geq 0 } \end{array} \right. \\[2pt] \)
    5. \(f ( x ) = \left\{ \begin{array} { l } { | x | \text { if } x < 2 } \\ { 4 \text { if } x \geq 2 } \end{array} \right.\)
    1. \(f ( x ) = \left\{ \begin{array} { l l } { x } & { \text { if } x < 1 } \\ { \sqrt { x } } & { \text { if } x \geq 1 } \end{array} \right. \\[2pt] \)
    2. \(g ( x ) = \left\{ \begin{array} { l l } { x ^ { 2 } \text { if } x \leq - 1 } \\ { x \quad \text { if } x > - 1 } \end{array} \right. \\[2pt] \)
    3. \(g ( x ) = \left\{ \begin{array} { l } { - 3 \text { if } x \leq - 1 } \\ { x ^ { 3 } \text { if } x > - 1 } \end{array} \right. \\[2pt] \)
    4. \(h ( x ) = \left\{ \begin{array} { l } { 0 \text { if } x \leq 0 } \\ { \frac { 1 } { x } \text { if } x > 0 } \end{array} \right. \\[2pt] \)
    5. \(h ( x ) = \left\{ \begin{array} { l } { \frac { 1 } { x } \text { if } x < 0 } \\ { x ^ { 2 } \text { if } x \geq 0 } \end{array} \right.\)
    Answers to Odd Exercises:

    23.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (1)

    25.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (2)

    27.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (3)Figure 2.4.27

    29.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (4)

    31.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (5)

    .

    33.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (6)

    .

    35.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (7)

    .

    37.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (8)

    .

    \( \bigstar \)Graph 3 or more part piecewise functions.

    1. \(h ( x ) = \left\{ \begin{array} { l l } { ( x + 10 ) ^ { 2 } - 4 } & { \text { if } x < - 8 } \\ { x + 4 } & { \text { if } - 8 \leq x < - 4 } \\ { \sqrt { x + 4 } } & { \text { if } x \geq - 4 } \end{array} \right. \\[5pt] \)
    2. \(f ( x ) = \left\{ \begin{array} { l l } { x + 10 } & { \text { if } x \leq - 10 } \\ { | x - 5 | - 15 } & { \text { if } - 10 < x \leq 20 } \\ { 10 } & { \text { if } x > 20 } \end{array} \right. \\[5pt] \)
    3. \(f ( x ) = \left\{ \begin{array} { l l } { x ^ { 2 } } & { \text { if } x < 0 } \\ { x } & { \text { if } 0 \leq x < 2 } \\ { - 2 } & { \text { if } x \geq 2 } \end{array} \right. \\[5pt] \)
    4. \(f ( x ) = \left\{ \begin{array} { l l } { x } & { \text { if } x < - 1 } \\ { x ^ { 3 } } & { \text { if } - 1 \leq x < 1 } \\ { 3 } & { \text { if } x \geq 1 } \end{array} \right. \\[5pt] \)
    5. \(g ( x ) = \left\{ \begin{array} { l l } { 5 } & { \text { if } x < - 2 } \\ { x ^ { 2 } } & { \text { if } - 2 \leq x < 2 } \\ { x } & { \text { if } x \geq 2 } \end{array} \right.\)
    1. \(g ( x ) = \left\{ \begin{array} { l l } { x } & { \text { if } x < - 3 } \\ { | x | } & { \text { if } - 3 \leq x < 1 } \\ { \sqrt { x } } & { \text { if } x \geq 1 } \end{array} \right. \\[5pt] \)
    2. \(h ( x ) = \left\{ \begin{array} { l } { \frac { 1 } { x } \text { if } x < 0 } \\ { x ^ { 2 } \text { if } 0 \leq x < 2 } \\ { 4 \text { if } x \geq 2 } \end{array} \right. \\[5pt] \)
    3. \(h ( x ) = \left\{ \begin{array} { l } { 0 \text { if } x < 0 } \\ { x ^ { 3 } \text { if } 0 < x \leq 2 } \\ { 8 \text { if } x > 2 } \end{array} \right. \\[5pt] \)
    4. \(f ( x ) ={[{[x+0.5}]}]\\[5pt] \)
    5. \(f(x) = {[{[x]}]}] +1\)
    6. \(f(x) = {[{[0.5x}]}] \\[5pt] \)
    7. \(f(x) = 2 {[{[x}]}] \)
    Answers to Odd Exercises:
    39.

    41.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (10)

    x

    43.
    2.4e: Exercises - Piecewise Functions, Combinations, Composition (11)

    45.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (12)

    x

    47.
    2.4e: Exercises - Piecewise Functions, Combinations, Composition (13)

    49.

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (14)

    x

    D: Graph Piecewise Functions and find their domain

    Exercise \(\PageIndex{D}\)

    \( \bigstar \) For each of the following, (a) graph the piecewise function, and (b)state its domain in interval notation.

    51. \(f(x)= \begin{cases} 2x-1 & \text{if $x < 1$} \\ 1+x & \text{if $x {\geq} 1$} \end{cases}\)

    52. \(f(x)= \begin{cases} x+1 & \text{if $x < -2$} \\ -2x-3 & \text{if $x {\geq} -2$} \end{cases}\)

    53. \(f(x)= \begin{cases} 3 & \text{if $x < 0$} \\ \sqrt{x} & \text{if $x {\geq} 0$} \end{cases}\)

    54. \(f(x)= \begin{cases} x+1 & \text{if $x < 0$} \\ x-1 & \text{if $x > 0$} \end{cases}\)

    55. \(f(x)= \begin{cases} x^2 & \text{if $x < 0$} \\ x+2 & \text{if $x {\geq} 0$} \end{cases}\)

    56. \(f(x)= \begin{cases} x^2 & \text{if $x < 0$} \\ 1-x & \text{if $x > 0$} \end{cases}\)

    57. \(f(x)= \begin{cases} |x| & \text{if $x < 2$} \\ 1 & \text{if $x {\geq} 2$} \end{cases}\)

    58. \(f(x)= \begin{cases} x+1 & \text{if $x < 1$} \\ x^3 & \text{if $x {\geq} 1$} \end{cases}\)

    Answers to Odd Exercises:
    51.

    domain: \((−\infty,\infty)\)

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (15)

    53.

    domain: \((−\infty,\infty)\)

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (16)

    55.

    domain: \((−\infty,\infty)\)

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (17)

    57.

    domain: \((−\infty,\infty)\)

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (18)

    E: Graph Piecewise Functions and evaluate them

    Exercise \(\PageIndex{E}\)

    \( \bigstar \)For each of the piecewise-defined functions, (a)sketch the graph, and (b)evaluate at the given values of the independent variable.

    59. \(f(x)=\begin{cases}x^2-3, & x≤0\\ 4x-3, & x>0\end{cases} \quad \text{Find } f(−4),\; f(0),\; f(2)\)

    60. \(f(x)=\begin{cases}4x+3, & x≤0\\ -x+1, & x>0 \end{cases} \quad \text{Find } f(−3), \;f(0),\;f(2)\)

    61. \(g(x)=\begin{cases}\frac{3}{x−2}, &x≠2\\4, &x=2\end{cases} \quad \text{Find } g(0), \;g(−4),\; g(2)\)

    62. \(h(x)=\begin{cases}x+1, &x≤5\\4, &x>5\end{cases} \quad \text{Find } h(0), \;h(π),\; h(5)\)

    Answers to Odd Exercises:
    59.\( f(−4)=13,\; f(0)=-3,\;f(2)=5\)
    \(\qquad\)2.4e: Exercises - Piecewise Functions, Combinations, Composition (19)
    61. a. \(g(0)=\frac{−3}{2},\; g(−4)=\frac{−1}{2},\; g(2)=4\)
    \(\qquad\)2.4e: Exercises - Piecewise Functions, Combinations, Composition (20)

    F: Construct the equation for a piecewise function given a graph

    Exercise \(\PageIndex{F}\)

    \( \bigstar \) (a)Evaluate piecewise function values from agraph. (b) Construct a piecewise function corresponding to the graph.

    63. Find \(f(-4), f(-2)\), and \(f(0)\).

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (21)

    64. Find \(f(−3), f(0)\), and \(f(1)\).

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (22)

    65. Find \(f(0), f(2)\), and \(f(4)\).

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (23)

    66. Find \(f(−5), f(−2)\), and \(f(2)\).

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (24)

    67. Find \(f(−3), f(−2)\), and \(f(2)\).

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (25)

    68. Find \(f(−3), f(0)\), and \(f(4)\).

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (26)

    69. Find \(f(−2), f(0)\), and \(f(2)\).

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (27)

    70. Find \(f(−3), f(1)\), and \(f(2)\).

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (28)
    Answers to Odd Exercises:

    63. \(f(−4) = 1, f(−2) = 1\), and \(f(0) = 0 \qquad f(x)=\begin{cases}1, & x≤-2\\ x, & x>-2\end{cases} )\)

    65. \(f(0) = 0, f(2) = 8\), and \(f(4) = 0 \qquad\qquad f(x)=\begin{cases}-2, & x≤0\\ \frac{1}{x}, & x>0\end{cases} \)

    67. \(f(−3) = 5, f(−2) = 4\), and \(f(2) = 2 \qquad f(x)=\begin{cases}5, & x< -2\\x^2, & -2 \le x < 2\\x, & x \ge 2\end{cases} \)

    69. \(f(−2) = −1, f(0) = 0\), and \(f(2) = 1 \qquad f(x)=\begin{cases}-1, & x<0\\ 0, & x=0\\ 1, & x>0\end{cases} \)

    G: Simplify Combination Functions and Find their Domains

    Exercise \(\PageIndex{G}\)

    \( \bigstar \)For each pair offunctions \(f\) and\(g\) given below, find and simplify the combination functions\(f+g\), \(f−g\), \(fg\), and \(\dfrac{f}{g}\). State the domain of each combination functionsin interval notation.

    71. \(f(x)=x^2+2x,\) \(g(x)=6−x^2 \\[4pt] \).

    72. \(f(x)=−3x^2+x,\) \(g(x)=5\).

    73. \(f(x)=2x^2+4x,\) \(g(x)=\dfrac{1}{2x}\).

    74. \(f(x)=\dfrac{1}{x−4},\) \(g(x)=\dfrac{1}{6−x}\).

    75. \(f(x)=3x^2,\) \(g(x)=\sqrt{x−5}\).

    76. \(f(x)=\sqrt{x},\) \(g(x)=|x−3|\)

    Answers to Odd Exercises:
    1. \((f+g)(x)=2x+6\), domain: \((−\infty,\infty)\)
      \((f−g)(x)=2x^2+2x−6\), domain: \((−\infty,\infty)\)
      \((fg)(x)=−x^4−2x^3+6x^2+12x\), domain: \((−\infty,\infty)\)
      \(\left(\dfrac{f}{g}\right)(x)=\dfrac{x^2+2x}{6−x^2},\) domain:\( (−\infty,−\sqrt{6})\cup(\sqrt{6},\sqrt{6})\cup(\sqrt{6},\infty)\)
    1. \((f+g)(x)=\dfrac{4x^3+8x^2+1}{2x}\), domain: \((−\infty,0)\cup(0,\infty)\)
      \((f−g)(x)=\dfrac{4x^3+8x^2−1}{2x}\), domain: \((−\infty,0)\cup(0,\infty)\)
      \((fg)(x)=x+2\), domain: \((−\infty,0)\cup(0,\infty)\)
      \( \left(\dfrac{f}{g}\right) (x)=4x^3+8x^2\), domain: \((−\infty,0)\cup(0,\infty)\)
    1. \((f+g)(x)=3x^2+\sqrt{x−5}\), domain: \(\left[5,\infty\right)\)
      \((f−g)(x)=3x^2−\sqrt{x−5}\), domain: \(\left[5,\infty\right)\)
      \((fg)(x)=3x^2\sqrt{x−5}\), domain: \(\left[5,\infty\right)\)
      \(\left(\dfrac{f}{g}\right)(x)=\dfrac{3x^2}{\sqrt{x−5}}\), domain: \((5,\infty)\)

    Composition

    H: Evaluate a Composition fromTables

    Exercise \(\PageIndex{H}\)

    \( \bigstar \)Use the function values for f and g shown in the table below to evaluate each expression.

    \(x\) 0 1 2 3 4 5 6 7 8 9
    \(f(x)\) 7 6 5 8 4 0 2 1 9 3
    \(g(x)\) 9 5 6 2 1 8 7 3 4 0

    78. \(f(g(8))\) \(\;\)79. \(f(g(5))\) \(\;\)80. \(g(f(5))\) \(\;\)81. \(g(f(3))\) \(\;\)82. \(f(f(4))\) \(\;\)83. \(f(f(1))\) \(\;\)84. \(g(g(2))\) \(\;\)85. \(g(g(6))\)

    \( \bigstar \)Use the function values for f and g shown in the table below to evaluate each expression.

    \(x\) -3 -2 -1 0 1 2 3
    \(f(x)\) 11 9 7 5 3 1 -1
    \(g(x)\) -8 -3 0 1 0 -3 -8

    86. \((f{\circ}g)(1)\) \(\quad\)87. \((f{\circ}g)(2)\) \(\quad\)88. \((g{\circ}f)(2)\) \(\quad\)89. \((g{\circ}f)(3)\) \(\quad\)90. \((g{\circ}g)(1)\) \(\quad\)91. \((f{\circ}f)(3)\)

    Answers to Odd Exercises:
    79. \(9\) 81. \(4\) 83. \(2\) 85. \(3\) 87. \(11\) 89. \(0\) 91. \( 7 \)

    I: Evaluate a Composition fromGraphs

    Exercise \(\PageIndex{I}\)

    \( \bigstar \)Use graphs to evaluate the following compositions.

    92. \((f \circg )(3) \\[5pt] \)

    92.1\((f \circg )(6) \\[5pt] \)

    93. \((f \circg )(1) \\[5pt] \)

    94. \((g \circf )(1) \\[5pt] \)

    95. \((g \circf )(0) \)

    96. \((f \circf )(5) \\[5pt] \)

    97. \((f \circf )(4) \\[5pt] \)

    98. \((g \circg )(2) \\[5pt] \)

    99. \((g \circg )(0) \)

    \(f\)
    2.4e: Exercises - Piecewise Functions, Combinations, Composition (29)
    \(g\)
    2.4e: Exercises - Piecewise Functions, Combinations, Composition (30)

    \( \bigstar \)Use graphs to evaluate the following compositions.

    100. \(g(f(1)) \\[5pt] \)

    101.\(g(f(2)) \\[5pt] \)

    102. \(f(g(4)) \\[5pt] \)

    103. \(f(g(1)) \\[5pt] \)

    104. \(f(h(2)) \\[5pt] \)

    105. \(h(f(2)) \\[5pt] \)

    106. \(f(g(h(4))) \\[5pt] \)

    107. \(f(g(f(−2)))\)

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (31) 2.4e: Exercises - Piecewise Functions, Combinations, Composition (32)

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (33)

    Answers to Odd Exercises:
    93. \(2\) 95. \(5\) 97. \(4\) 99. \(0\) 101. \(2\) 103. \(1\) 105. \(4\) 107. \(4\)

    J: Evaluate a Composition from Formulas

    Exercise \(\PageIndex{J}\)

    \( \bigstar \)Use the given pair of functions to find the following values if they exist.

    a. \((g\circ f)(0) \) b. \((f\circ g)(-1) \) c. \((f \circ f)(2) \) d. \((g\circ f)(-3) \) e. \((f\circ g)\left(\frac{1}{2}\right) \) f. \((f \circ f)(-2) \)
    1. \(f(x) = x^2 \), \( g(x) = 2x+1 \\[5pt] \)
    2. \(f(x) = 4-x \), \( g(x) = 1-x^2 \\[5pt] \)
    3. \(f(x) = 4-3x \), \( g(x) = |x| \\[5pt] \)
    4. \(f(x) = |x-1| \), \( g(x) = x^2-5 \)
    1. \(f(x) = 4x+5 \), \( g(x) = \sqrt{x} \\[5pt] \)
    2. \(f(x) = \sqrt{3-x} \), \( g(x) = x^2+1 \\[5pt] \)
    3. \(f(x) = 6-x-x^2 \), \( g(x) = x\sqrt{x+10} \\[5pt] \)
    4. \(f(x) = \sqrt[3]{x+1} \), \( g(x) = 4x^2-x \\[5pt] \)
    1. \(f(x) = \dfrac{3}{1-x} \), \( g(x) = \dfrac{4x}{x^2+1} \)
    2. \(f(x) = \dfrac{x}{x+5} \), \( g(x) = \dfrac{2}{7-x^2} \)
    3. \(f(x) = \dfrac{2x}{5-x^2} \), \( g(x) = \sqrt{4x+1} \)
    4. \(f(x) =\sqrt{2x+5} \), \( g(x) = \dfrac{10x}{x^2+1} \)
    Answers to Odd Exercises

    111.\( f(x) = x^2 \), \( g(x) = 2x+1 \):

    1. \((g\circ f)(0) = 1 \)
    2. \((f\circ g)(-1) = 1 \)
    3. \((f \circ f)(2) = 16 \)
    4. \((g\circ f)(-3) = 19 \)
    5. \((f\circ g)\left(\frac{1}{2}\right) = 4 \)
    6. \((f \circ f)(-2) = 16 \)

    113. \( f(x) = 4-3x \), \( g(x) = |x| \):

    1. \((g\circ f)(0) = 4 \)
    2. \((f\circ g)(-1) = 1 \)
    3. \((f \circ f)(2) = 10 \)
    4. \((g\circ f)(-3) = 13 \)
    5. \((f\circ g)\left(\frac{1}{2}\right) = \frac{5}{2} \)
    6. \((f \circ f)(-2) = -26 \)

    115. \( f(x) = 4x+5 \), \( g(x) = \sqrt{x} \):

    1. \((g\circ f)(0) = \sqrt{5} \)
    2. \((f\circ g)(-1) \) is not real
    3. \((f \circ f)(2) = 57 \)
    4. \((g\circ f)(-3) \) is not real
    5. \((f\circ g)\left(\frac{1}{2}\right) = 5+2\sqrt{2} \)
    6. \((f \circ f)(-2) = -7 \)

    117.\(f(x)=6-x-x^2 \),
    \(\quad\)\( g(x)=x\sqrt{x+10}\)

    1. \((g\circ f)(0) = 24 \)
    2. \((f\circ g)(-1) = 0 \)
    3. \((f \circ f)(2) = 6 \)
    4. \((g\circ f)(-3) = 0 \)
    5. \((f\circ g)\left(\frac{1}{2}\right) = \frac{27-2\sqrt{42}}{8} \)
    6. \((f \circ f)(-2) = -14 \)

    119. \( f(x) = \frac{3}{1-x} \), \( g(x) = \frac{4x}{x^2+1} \):

    1. \((g\circ f)(0) = \frac{6}{5} \)
    2. \((f\circ g)(-1) = 1 \)
    3. \((f \circ f)(2) = \frac{3}{4} \)
    4. \((g\circ f)(-3) = \frac{48}{25} \)
    5. \((f\circ g)\left(\frac{1}{2}\right) = -5 \)
    6. \((f \circ f)(-2) \) is undefined

    121. \( f(x) = \frac{2x}{5-x^2} \), \( g(x) = \sqrt{4x+1} \):

    1. \((g\circ f)(0) = 1 \)
    2. \((f\circ g)(-1) \) is not real
    3. \((f \circ f)(2) = -\frac{8}{11} \)
    4. \((g\circ f)(-3) = \sqrt{7} \)
    5. \((f\circ g)\left(\frac{1}{2}\right) = \sqrt{3} \)
    6. \((f \circ f)(-2) = \frac{8}{11} \)

    K: Simplify a Composition and Find its Domain

    Exercise \(\PageIndex{K}\): Find and simplify the Equation for a Composition

    \( \bigstar \) Find and simplify (a) \( (f \circ g)(x)\), and (b) \( (g \circ f)(x)\). State the domain for(c) \( (f \circ g)(x)\) andfor(d) \( (g \circ f)(x)\).

    1. \(f(x)=x^5\), \(g(x)=x+1 \\[5pt] \)
    2. \(f(x)=|x|\), \(g(x)=5x+1 \\[5pt] \)
    3. \(f(x) = 2x+3 \), \( g(x) = x^2-9 \\[5pt] \)
    4. \(f(x)=4x+8\), \(g(x)=7−x^2 \\[5pt] \)
    5. \(f(x)=5x+7\), \(g(x)=4−2x^2 \\[5pt] \)
    1. \(f(x)=2x^2+1\), \(g(x)=3x+5 \\[5pt] \)
    2. \(f(x)=2x^2+1\), \(g(x)=3x−5 \\[5pt] \)
    3. \(f(x) = x^2 -x+1 \), \( g(x) = 3x-5 \\[5pt] \)
    4. \(f(x) = x^2-4 \), \( g(x) = |x| \\[5pt] \)
    Answers to Odd Exercises

    127. a. \((f \circg )(x) = (x+1)^5\), domain: \((−\infty,\infty) \) \( \qquad \) b. \((g \circf ) (x)= x^5+1 \). domain: \((−\infty,\infty) \)
    129. a. \((f \circg )(x)=2x^2-15 \), domain: \( (-\infty, \infty) \)\( \qquad \) b. \((g \circf ) (x)= 4x^2+12x \), domain: \( (-\infty, \infty) \)
    131. a. \((f \circg )(x)= 27-10x^2\), domain: \((−\infty,\infty) \)\( \;\) b. \((g \circf ) (x)=-50x^2-140x-94 \). domain: \((−\infty,\infty) \)
    133. a. \((f \circg )(x)= 2(3x−5)^2+1\), domain: \((−\infty,\infty) \)\( \qquad \) b. \((g \circf ) (x)= 6x^2−2\). domain: \((−\infty,\infty) \)
    135. a. \((f \circg )(x)= x^2-4 \),domain: \( (-\infty, \infty) \)\( \qquad \) b. \((g \circf ) (x)= |x^2-4| \),domain: \( (-\infty, \infty) \)

    \( \bigstar \) Find and simplify (a) \( (f \circ g)(x)\), and (b) \( (g \circ f)(x)\). State the domain for(c) \( (f \circ g)(x)\) andfor(d) \( (g \circ f)(x)\).

    1. \(f(x) = 3x-5 \), \( g(x) = \sqrt{x} \\[5pt] \)
    2. \(f(x)=\sqrt{x}+2\), \(g(x)=x^2+3 \\[5pt] \)
    3. \(f(x) = |x+1| \), \( g(x) = \sqrt{x} \\[5pt] \)
    4. \(f(x) = |x| \), \( g(x) = \sqrt{4-x} \\[5pt] \)
    5. \(f(x)=x^2+2\),\(g(x)=\sqrt{x−2} \\[5pt] \)
    6. \(f(x)=x^2+1\), \(g(x)=\sqrt{x+2} \\[5pt] \)
    1. \(f(x) = x^2-x-1 \), \( g(x) = \sqrt{x-5} \\[5pt] \)
    2. \(f(x) = 3-x^2 \), \( g(x) = \sqrt{x+1} \\[5pt] \)
    3. \(f(x)=\dfrac{1}{\sqrt{x}}\),\(g(x)=x^2−4 \\[5pt] \)
    4. \(f(x)=\dfrac{1}{\sqrt{x}}\),\(g(x)=x^2−9 \\[5pt] \)
    5. \(f(x)=\sqrt{x+4}\), \(g(x)=12−x^3 \\[5pt] \)
    6. \(f(x)=x^3+1\) and \(g(x)=\sqrt[3]{x−1}\)
    Answers to Odd Exercises

    137. a. \((f \circg )(x)= 3 \sqrt{x} -5\), domain: \( [0, \infty) \)\( \qquad \) b. \((g \circf ) (x)= \sqrt{3x-5} \). domain: \( [ \frac{5}{3}, \infty ) \)
    139. a. \((f \circg )(x)= \sqrt{x}+1 \),domain: \( [0,\infty) \)\( \qquad \) b. \((g \circf ) (x)= \sqrt{|x+1|} \),domain: \( (-\infty, \infty) \)
    141. a. \((f \circg )(x)= x\), domain: \( [2,\infty) \)\( \qquad \) b. \((g \circf ) (x)= |x| \). domain: \((−\infty,\infty) \)
    143. a. \((f \circg )(x)= x-6- \sqrt{x-5}\), d: \([5,\infty) \)\( \qquad \) b. \((g \circf ) (x)= \sqrt{x^2-x-6} \). d: \((−\infty,-2]\cup[3,\infty) \)
    145. a. \((f \circg )(x)= \frac{1}{\sqrt{x^2-4}}\), domain: \((−\infty,−2)\cup(2,\infty) \)\( \qquad \) b. \((g \circf ) (x)= \frac{1}{x}-4 \). domain: \((0,\infty) \)
    147. a. \((f \circg )(x)= \sqrt{16-x^3}\), d: \( ( -\infty, 2\sqrt[3]{2} ]\)\( \qquad \) b. \((g \circf ) (x)= 12-(x+4) \sqrt{x+4}\). d: \( [-4, \infty) \)

    \( \bigstar \) Find and simplify (a) \( (f \circ g)(x)\), and (b) \( (g \circ f)(x)\). State the domain for(c) \( (f \circ g)(x)\) andfor(d) \( (g \circ f)(x)\).

    1. \(f(x)=\dfrac{1}{x}\),\(g(x)=x−3 \\[5pt] \)
    2. \(f(x)=\frac{1}{x+2}\), \(g(x)=4x+3 \\[5pt] \)
    3. \(f(x) = 3x-1 \), \( g(x) = \dfrac{1}{x+3} \\[5pt] \)
    4. \(f(x)=\dfrac{1}{x−6}\), \(g(x)=\dfrac{7}{x}+6 \\[5pt] \)
    5. \(f(x)=\dfrac{1}{x−4}\), \(g(x)=\dfrac{2}{x}+4 \\[5pt] \)
    6. \(f(x) = \dfrac{3x}{x-1} \), \( g(x) =\dfrac{x}{x-3} \\[5pt] \)
    1. \(f(x) = \dfrac{x}{2x+1} \), \( g(x) = \dfrac{2x+1}{x} \\[5pt] \)
    2. \(f(x)=\dfrac{1−x}{x}\),\(g(x)=\dfrac{1}{1+x^2} \\[5pt] \)
    3. \(f(x)=\dfrac{1}{x}\),\(g(x)=\sqrt{x−1} \\[5pt] \)
    4. \(f(x)=\sqrt{2−4x}\),\(g(x)=−\dfrac{3}{x} \\[5pt] \)
    5. \(f(x)=\sqrt[3]{x}\), \(g(x)=\dfrac{x+1}{x^3} \\[5pt] \)
    6. \(f(x) = \dfrac{2x}{x^2-4} \), \( g(x) =\sqrt{1-x} \\[5pt] \)
    Answers to Odd Exercises:

    149. a. \((f \circg )(x)= \frac{1}{x-3}\), domain: \((−\infty,3)\cup(3,\infty) \)\( \qquad \) b. \((g \circf ) (x)=\frac{1}{x}-3 \). domain: \((−\infty,0)\cup(0,\infty) \)
    151. a. \((f \circg )(x)= -\frac{x}{x+3} \),d: \( \left(-\infty, -3\right) \cup \left(-3, \infty\right) \)\( \qquad \) b. \((g \circf ) (x)= \frac{1}{3x+2} \),d: \( \left(-\infty, -\frac{2}{3}\right) \cup \left(-\frac{2}{3}, \infty\right) \)
    153. a. \((f \circg )(x)=\dfrac{x}{2} \), domain: \((−\infty,0)\cup(0,\infty) \)\( \qquad \) b. \((g \circf ) (x)=2x-4 \). domain: \((−\infty,4)\cup(4,\infty) \)
    155. a. \((f \circg )(x)= \frac{2x+1}{5x+2} \),d: \( \left(-\infty, -\frac{2}{5}\right) \cup \left(-\frac{2}{5}, 0\right) \cup (0,\infty) \)
    \( \qquad\;\) b. \((g \circf ) (x)=\frac{4x+1}{x} \),domain: \( \left(-\infty, -\frac{1}{2}\right) \cup \left(-\frac{1}{2}, 0), \cup (0, \infty\right) \)
    157. a. \((f \circg )(x)= \frac{1}{\sqrt{x-1}}\), domain: \((1,\infty) \)\( \qquad \) b. \((g \circf ) (x)= \sqrt{\frac{1}{x}-1}\). domain: \( (0, 1] \)
    159. a. \((f \circg )(x)= \dfrac{\sqrt[3]{x+1}}{x} \), d: \((−\infty,0)\cup(0,\infty) \)\( \qquad \) b. \((g \circf ) (x)= \frac{\sqrt[3]{x}+1}{x} \). d: \((−\infty,0)\cup(0,\infty) \)

    \( \bigstar \) (a) Findand simplify \((f \circ f)(x) \)\and (b) state the domain of the composition.

    1. \(f(x) = 2x+3 \\[5pt] \)
    2. \(f(x) = x^2 -x+1 \\[5pt] \)
    3. \(f(x) = x^2-4 \\[5pt] \)
    4. \(f(x) = 3x-5 \)
    1. \(f(x) = |x+1| \\[5pt] \)
    2. \(f(x) = 3-x^2 \\[5pt] \)
    3. \(f(x) = |x| \\[5pt] \)
    4. \(f(x) = x^2-x-1 \)
    1. \(f(x) = 3x-1 \)
    2. \(f(x) = \dfrac{3x}{x-1} \)
    3. \(f(x) = \dfrac{x}{2x+1} \)
    4. \(f(x) = \dfrac{2x}{x^2-4} \)

    \( \bigstar \) Given\( f(x) = -2x \), \( g(x) = \sqrt{x} \) and \( h(x) = |x| \), find and simplify expressions for the following functions and state the domain of each using interval notation.

    1. \((h\circ g \circ f)(x) \)
    2. \((h\circ f \circ g)(x) \)
    1. \((g\circ f \circ h)(x) \)
    2. \((g\circ h \circ f)(x) \)
    1. \((f\circ h \circ g)(x) \)
    2. \((f\circ g \circ h)(x) \)
    Answers to Odd Exercises:

    163.\((f \circ f)(x) = 4x+9 \), domain: \( (-\infty, \infty) \)
    165. \((f \circ f)(x) =x^4-8x^2+12 \),domain: \( (-\infty, \infty) \)
    167. \((f \circ f)(x) = ||x+1|+1| = |x+1|+1 \),domain: \( (-\infty, \infty) \)
    169. \((f \circ f)(x) = | |x| | = |x| \),domain: \( (-\infty, \infty) \)
    171. \((f \circ f)(x) = 9x-4 \),domain: \( (-\infty, \infty) \)
    173. \((f \circ f)(x) = \frac{x}{4x+1} \),d: \( \left(-\infty, -\frac{1}{2}\right) \cup \left(-\frac{1}{2}, -\frac{1}{4} \right) \cup \left(-\frac{1}{4},\infty\right) \)
    175. \((h\circ g \circ f)(x)= |\sqrt{-2x}|= \sqrt{-2x} \),domain: \( (-\infty, 0] \)
    177. \((g\circ f \circ h)(x) = \sqrt{-2|x|} \),domain: \(\{0\} \)
    179. \((f\circ h \circ g)(x) = -2|\sqrt{x}| = -2\sqrt{x} \),domain: \( [0,\infty) \)

    L: Decomposition

    Exercise \(\PageIndex{L}\)

    \( \bigstar \)Find functions \(f(x)\) and \(g(x)\) so the given function can be expressed as \(f(g(x))\).

    1. \(h(x)=\sqrt { \dfrac{2x−1}{3x+4}}\)
    2. \(h(x)=(x+2)^2\)
    3. \(h(x)=(x−5)^3\)
    4. \(h(x)=\dfrac{3}{x−5}\)
    5. \(h(x)=\dfrac{4}{(x+2)^2}\)
    6. \(h(x)=4+\sqrt[3]{x}\)
    7. \(h(x)=\sqrt[3]{\dfrac{1}{2x−3}}\)
    8. \(h(x)=\dfrac{1}{(3x^2−4)^{−3}}\)
    1. \(h(x)=\sqrt[4]{\dfrac{3x−2}{x+5}}\)
    2. \(h(x)=\left(\dfrac{8+x^3}{8−x^3}\right)^4\)
    3. \(h(x)=\sqrt{2x+6}\)
    4. \(h(x)=(5x−1)^3\)
    5. \(h(x)=\sqrt[3]{x−1}\)
    6. \(h(x)=|x^2+7|\)
    7. \(h(x)=\dfrac{1}{(x−2)^3}\)
    8. \(h(x)=\left(\dfrac{1}{2x−3}\right)^2\)
    9. \(p(x) = (2x+3)^3 \)
    1. \(P(x) = \left(x^2-x+1\right)^5 \)
    2. \(h(x) = \sqrt{2x-1} \)
    3. \(H(x) = |7-3x| \)
    4. \(r(x) = \dfrac{2}{5x+1} \)
    5. \(R(x) = \dfrac{7}{x^2-1} \)
    6. \(q(x) = \dfrac{|x|+1}{|x|-1} \)
    7. \(Q(x) = \dfrac{2x^3+1}{x^3-1} \)
    8. \(v(x) = \dfrac{2x+1}{3-4x} \)
    9. \(w(x) = \dfrac{x^2}{x^4+1} \)
    Answers to Odd Exercises:

    185. sample: \(f(x)=\sqrt{x}, \quad g(x)=\frac{2x−1}{3x+4}\)
    187. sample: \(f(x)=x^3, \quad g(x)=x−5\)
    189: sample: \(f(x)=\frac{4}{x}, \quad g(x)=(x+2)^2\)
    191. sample: \(f(x)=\sqrt[3]{x}, \quad g(x)=\frac{1}{2x−3}\)
    193. sample: \(f(x)=\sqrt[4]{x}, \quad g(x)=\frac{3x−2}{x+5}\)
    195. sample: \(f(x)=\sqrt{x}, \quad g(x)=2x+6\)
    197. sample: \(f(x)=\sqrt[3]{x}, \quad g(x)=(x−1)\)
    199. sample: \(f(x)=x^3, \quad g(x)=\frac{1}{x−2}\)
    201. Let \( g(x) = 2x+3 \) and \( f(x) = x^3 \), then \(p(x) = (f\circ g)(x) \).
    203. Let \( g(x) = 2x-1 \) and \( f(x) = \sqrt{x} \), then \(h(x) = (f\circ g)(x) \).
    205. Let \( g(x) = 5x+1 \) and \( f(x) = \frac{2}{x} \), then \(r(x) =(f\circ g)(x) \).
    207. Let \( g(x) = |x| \) and \( f(x) = \frac{x+1}{x-1} \), then \(q(x) =(f\circ g)(x) \).
    209. Let \( g(x) =2x \) and \( f(x) = \frac{x+1}{3-2x} \), then \(v(x) =(f\circ g)(x) \).

    2.4e: Exercises - Piecewise Functions, Combinations, Composition (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Jeremiah Abshire

    Last Updated:

    Views: 5573

    Rating: 4.3 / 5 (54 voted)

    Reviews: 93% of readers found this page helpful

    Author information

    Name: Jeremiah Abshire

    Birthday: 1993-09-14

    Address: Apt. 425 92748 Jannie Centers, Port Nikitaville, VT 82110

    Phone: +8096210939894

    Job: Lead Healthcare Manager

    Hobby: Watching movies, Watching movies, Knapping, LARPing, Coffee roasting, Lacemaking, Gaming

    Introduction: My name is Jeremiah Abshire, I am a outstanding, kind, clever, hilarious, curious, hilarious, outstanding person who loves writing and wants to share my knowledge and understanding with you.